1	i	y' = 6 - 2x y' = 0 used x = 3 y = 16	M1 M1 A1 A1	condone one error	
		(0, 7) (-1, 0) and (7,0) found or marked on graph	3	1 each	
		sketch of correct shape	1	must reach pos. y - axis	8
	ii	58.6 to 58.7	3 M1	B1 for $7x + 3x^2 - x^3/3$ [their value at 5] – [their value at 1] dependent on integration attempted	3
	iii	using his (ii) and 48	1		1

2	(i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 4 \times 2 + 3 \text{ or } 11 \text{ isw}$	M1*		
		9 = their $(4 \times 2 + 3) \times 2 + c$	M1dep*	or $y - 9 =$ their $(4 \times 2 + 3) \times (x - 2)$	
		y = 11x - 13 or $y = 11x + c$ and $c = -13stated$	A1	or $y - 9 = 11(x - 2)$ isw	
		isw	[3]		
2	(ii)	$\frac{4x^2}{2} + 3x$	M1*		
		$[y=] 2x^2 + 3x + c$	A1	must see "2" and " + c "; may be earned later eg after attempt to find c	
		$9 = 2 \times 2^2 + 3 \times 2 + c$	M1dep*	must include constant, which may be implied by answer	
		$y = 2x^2 + 3x - 5$ cao	A1	allow first 4 marks for $y = 2x^2 + 3x + c$ and $c = -5$ stated	
		(1, 0) and (-2.5, 0) oe cao	B1	or for $x = 1, y = 0$ and $x = -2.5, y = 0$	B0 for just stating $x = 1$ and $x = -2.5$
		$x = -\frac{3}{4}$	B1		
		$y = -\frac{49}{8}$	B1	$-6.125 \text{ or} - 6\frac{1}{8}$	
			[7]		

2	(iii)	substitution to obtain [$y =$] f(2 x) in polynomial form	M1	f(x) must be the quadratic in x with linear and constant term obtained in part (ii), may be in factorised form	or their $x = 1 \rightarrow$ their 0.5 and their $x = -2.5 \rightarrow$ their $x = -1.25$
		y = $(2x - 1)(4x + 5)$ or y = $8x^2 + 6x - 5$ or y = $2\left(2x + \frac{3}{4}\right)^2 - \frac{49}{8}$	A1FT	must be simplified to one of these forms, FT their quadratic in x with linear and constant term obtained in part (ii)	hence $y = (2x - 1)(4x + 5)$ FT their x-intercepts from their quadratic in x with linear and constant term obtained in part (ii)
		$\left(-\frac{3}{8},-\frac{49}{8}\right)$ oe	B1 [3]	or FT their (both non-zero) co-ordinates for minimum point or their quadratic in x with linear and constant term obtained in part (ii)	

3	i	(x+5)(x-2)(x+2)	2	M1 for $a (x + 5)(x - 2)(x + 2)$	2
	ii	$[(x+2)](x^2+3x-10)$	M1	for correct expansion of one pair of their brackets	
		$x^3 + 3x^2 - 10x + 2x^2 + 6x - 20$ o.	M1	for clear expansion of correct factors – accept given answer from $(x + 5)(x^2 - 4)$ as first step	2
	iii	$y' = 3x^2 + 10x - 4$ their $3x^2 + 10x - 4 = 0$ s.o.i. x = 0.36 from formula o.e.	M2 M1 A1	M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change	
		(-3.7, 12.6)	B1+1		6
	iv	(-1.8, 12.6)	B1+1	accept (−1.9, 12.6) or f.t.(½ their max x, their max y)	2

4	(i) $\frac{x^4}{4} - x^3 - \frac{x^2}{2} + 3x$	M2	M1 if at least two terms correct	ignore + c
	their integral at 3 – their integral at 1 [= $-2.25 - 1.75$]	M1 A1	dependent on integration attempted	M0 for evaluation of $x^3 - 3x^2 - x + 3$ or of differentiated version
	= -4 isw represents area between curve and x axis between $x = 1$ and 3	B1		B0 for area <i>under</i> or above curve between $x = 1$ and 3
	negative since below <i>x</i> -axis	B1		
4	(ii) $y' = 3x^2 - 6x - 1$	M1		
	their $y' = 0$ soi	M1	dependent on differentiation attempted	
	x = 2a with $a = 3, b = -$	M1	or $3(x-1)^2 - 4 = 0$ or better	(in the state)
	6 and $c = -1$ isw x = 6 or better as final answer	A1	eg A1 for $1 \pm \frac{2}{3}\sqrt{3}$	no follow through; NB 6 or better stated without working implies use of correct method
	$\frac{6-\sqrt{48}}{6} < x < \frac{6+\sqrt{48}}{6}$ or ft their	B1	allow \leq instead of $<$	A0 for incorrect simplification, eg $1 \pm \sqrt{48}$
	6 6 final answer			allow B1 if <i>both</i> inequalities are stated separately and
				it's clear that both apply allow P1 if the terms and the signs are in reverse order
				allow B1 if the terms and the signs are in reverse order

5	(i)	$3x^2 - 6x - 9$	M1		
	1.00	use of their $y' = 0$	M1		
	1.1	x = -1	Al		
		x = 3	A1		
		valid method for determining nature of turning point	M1		1
		max at $x = -1$ and min at $x = 3$	Al	c.a.o.	6
	(ii)	$\frac{x(x^2 - 3x - 9)}{\frac{3 \pm \sqrt{45}}{2}} \text{ or } (x - \frac{3}{2})^2 = 9 + \frac{9}{4}$	M1		1.1
		-	MI		1
		$0, \frac{3}{2} \pm \frac{\sqrt{45}}{2}$ o.e.	Al		3
	(iii)	sketch of cubic with two turning points correct way up	G1		
		x-intercepts - negative, 0, positive shown	DGI		2

6	i	$y' = 3x^2 - 12x$	B1B1		
		use of $y' = 0$	M1		
		x = 0 and 4	A1		
		(0, 12) and $(4, -20)$	A1	Allow $y = 12$ and $y = -20$	
		y'' = 6x - 12 used max when $x = 0$, min when $x = 4$	M1 A1	y' used each side of TP or good sketch Both stated, only one needs testing	7
	ii	when $x = 2 y' = -12$	B1		
		grad of normal = $1/12$	B1ft	from their y'	
		y + 4 = 1/12(x - 2)	M1ft	accept any numerical m Or $-4 = \text{their}(m) \times 2 + c$	4 [11]
		$y = \frac{1}{12}x - 4\frac{1}{6}$	A1	Any recognisable 25/6, at worst 4.1	_