

2	(i)		$\begin{aligned} & {\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] 4 \times 2+3 \text { or } 11 \text { isw }} \\ & 9=\text { their }(4 \times 2+3) \times 2+c \\ & y=11 x-13 \text { or } y=11 x+c \text { and } c=-13 \\ & \text { stated } \\ & \text { isw } \end{aligned}$	M1* M1dep* A1 [3]	or $y-9=$ their $(4 \times 2+3) \times(x-2)$ or $y-9=11(x-2)$ isw	
2	(ii)		$\begin{aligned} & \frac{4 x^{2}}{2}+3 x \\ & {[y=] 2 x^{2}+3 x+c} \\ & 9=2 \times 2^{2}+3 \times 2+c \\ & y=2 x^{2}+3 x-5 \text { cao } \\ & (1,0) \text { and }(-2.5,0) \text { oe cao } \\ & x=-\frac{3}{4} \\ & y=-\frac{49}{8} \end{aligned}$	M1* A1 M1dep* A1 B1 B1 B1 [7]	must see " 2 " and " $+c$ "; may be earned later eg after attempt to find c must include constant, which may be implied by answer allow first 4 marks for $y=2 x^{2}+3 x+c$ and $c=-5$ stated or for $x=1, y=0$ and $x=-2.5, y=0$ -6.125 or $-61 / 8$	B0 for just stating $x=1$ and $x=-2.5$

3	i	$(x+5)(x-2)(x+2)$	2	M1 for $a(x+5)(x-2)(x+2)$	2
	ii	$\begin{aligned} & {[(x+2)]\left(x^{2}+3 x-10\right)} \\ & x^{3}+3 x^{2}-10 x+2 x^{2}+6 x-20 \end{aligned}$ $0 .$	M1 M1	for correct expansion of one pair of their brackets for clear expansion of correct factors - accept given answer from $(x+5)\left(x^{2}-4\right)$ as first step	
	iii	$y^{\prime}=3 x^{2}+10 x-4$ their $3 x^{2}+10 x-4=0$ s.o.i. $x=0.36 \ldots$ from formula o.e.	$\begin{aligned} & \text { M2 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change	2
		$(-3.7,12.6)$	B1+1		6
	iv	$(-1.8,12.6)$	B1+1	accept ($-1.9,12.6$) or f.t. ($1 / 2$ their $\max x$, their $\max y$)	2

4	(i) $\frac{x^{4}}{4}-x^{3}-\frac{x^{2}}{2}+3 x$ their integral at 3 - their integral at 1 $[=-2.25-1.75]$ $=-4 \text { isw }$ represents area between curve and x axis between $x=1$ and 3 negative since below x-axis	M2 M1 A1 B1 B1	M1 if at least two terms correct dependent on integration attempted	ignore $+c$ M0 for evaluation of $x^{3}-3 x^{2}-x+3$ or of differentiated version B0 for area under or above curve between $x=1$ and 3
4	(ii) $y^{\prime}=3 x^{2}-6 x-1$ their $y^{\prime}=0$ soi 6 and $c=-1$ isw $x=\frac{6}{6}$ or better as final answer $\frac{6-\sqrt{48}}{6}<x<\frac{6+\sqrt{48}}{6}$ or ft their final answer	M1 M1 M1 A1 B1	dependent on differentiation attempted or $3(x-1)^{2}-4[=0]$ or better eg A1 for $1 \pm \frac{2}{3} \sqrt{3}$ allow \leq instead of $<$	no follow through; NB \square working implies use of correct method A0 for incorrect simplification, eg $1 \pm \sqrt{ } 48$ allow B1 if both inequalities are stated separately and it's clear that both apply allow $\mathbf{B} 1$ if the terms and the signs are in reverse order

\begin{tabular}{|c|c|c|c|c|c|}
\hline 6 \& i

ii \& \[
$$
\begin{aligned}
& y^{\prime}=3 x^{2}-12 x \\
& \text { use of } y^{\prime}=0 \\
& x=0 \text { and } 4 \\
& (0,12) \text { and }(4,-20) \\
& y^{\prime \prime}=6 x-12 \text { used } \\
& \text { max when } x=0, \text { min when } x=4 \\
& \text { when } x=2 y^{\prime}=-12 \\
& \text { grad of normal }=1 / 12 \\
& y+4=1 / 12(x-2) \\
& y=\frac{1}{12} x-4 \frac{1}{6}
\end{aligned}
$$

\] \& | B1B1 |
| :--- |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 |
| B1 |
| B1ft |
| M1ft |
| A1 | \& | Allow $\mathrm{y}=12$ and $\mathrm{y}=-20$ |
| :--- |
| y^{\prime} used each side of TP or good sketch Both stated, only one needs testing |
| from their y^{\prime} |
| accept any numerical m |
| Or $-4=$ their $(\mathrm{m}) \times 2+\mathrm{c}$ |
| Any recognisable 25/6, at worst 4.1 | \& | 7 |
| :--- |
| 4 |
| [11] | \\

\hline
\end{tabular}

